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Abstract. We calculate the dynamic critical exponent for the Niedermayer
algorithm applied to the two-dimensional Ising and XY models, for various values
of the free parameter E0. For E0 = −1 we regain the Metropolis algorithm and
for E0 = 1 we regain the Wolff algorithm. For −1 < E0 < 1, we show that
the mean size of the clusters of (possibly) turned spins initially grows with the
linear size of the lattice, L, but eventually saturates at a given lattice size ˜L,
which depends on E0. For L > ˜L, the Niedermayer algorithm is equivalent to
the Metropolis one, i.e., they have the same dynamic exponent. For E0 > 1,
the autocorrelation time is always greater than for E0 = 1 (Wolff) and, more
important, it also grows faster than a power of L. Therefore, we show that the
best choice of cluster algorithm is the Wolff one, when comparing against the
Niedermayer generalization. We also obtain the dynamic behavior of the Wolff
algorithm: although not conclusively, we propose a scaling law for the dependence
of the autocorrelation time on L.
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1. Introduction

Numerical simulations have been widely used in the study of physical systems, especially
in the last few decades. The field of statistical mechanics, among others, has benefited
a great deal from the use of this technique. In particular, Monte Carlo methods allowed
for a precise determination of thermodynamic parameters in a variety of models, both
classical and quantum. Excellent reviews on these methods can be found in [1, 2].

In recent years, this field has seen a fast development of new algorithms, which aim
to make the simulation more efficient, both in time and in memory, as well as broadening
its application to more complex systems. As examples of these developments, we can
recall: the calculation of the density of states through flat histograms, which allows
obtaining information at any temperature from one single simulation, independent of
temperature [3]; the use of bitwise operations and storage, which increases by a great
deal the speed of the update process and saves memory (with the drawback that this
procedure can be used only with specific models) [4]; and the introduction of cluster
algorithms, which updates collections of spins, decreasing the autocorrelation time and
almost eliminating critical slowing down [1, 2, 5, 6].

In this work we will focus on this last issue. In fact, critical slowing down is a serious
drawback, which makes simulation of systems at, or near, critical points very inefficient.
This phenomenon is measured through the scaling of the autocorrelation time, τ , with
the linear size of the lattice, L, assumed to be in the form τ ∼ Lz, for points at the
critical region. The popular Metropolis algorithm, for example, when applied to the Ising
model in two dimensions, presents z ∼ 2.17 [7]. Algorithms which update clusters of spins
(the so-called cluster algorithms) have a much lower value of z: this is the case for the
Swendsen–Wang [5] and Wolff [6] algorithms, for which z is approximately zero for the
two-dimensional Ising model [8, 9].

An alternative to (and generalization of) these last two cluster algorithms, the
Niedermayer algorithm, was introduced some time ago [10] but, to the best of our
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knowledge, has never had its dynamic behavior studied in detail. In this work, we calculate
the dynamic exponent for this algorithm, applied to the Ising and XY models, for some
values of the free parameter E0 (see below), in order to determine the best choice of this
parameter.

This work is organized as follows. In section 2 we present the Niedermayer algorithm
and relate it to the Metropolis and Wolff ones. In section 3 we review some features
connected to the autocorrelation time and the dynamic exponent z, in section 4 we present
and discuss our results, and in section 5 we summarize the results.

2. The Niedermayer algorithm

The Niedermayer algorithm was introduced some time ago and is an alternative to Wolff
and Swendsen–Wang cluster algorithms. The idea is to build clusters of spins and accept
their updating as a single entity, one hopes in a more efficient way, when compared to
these last two algorithms. In this work, we have chosen to build the clusters according
to the Wolff criterion (they can be constructed according to the Swendsen–Wang rule
but the results will not differ qualitatively in two dimensions, and in higher dimensions
the Wolff algorithm is superior to the Swendsen–Wang one). It works as follows, for the
Ising model (the generalization of this algorithm for the XY model is presented in the
appendix): a spin in the lattice is randomly chosen to be the first spin of the cluster. This
spin is called the seed. First neighbors of this spin may be considered part of the cluster,
with a probability

Padd(Eij) =

{

1 − eK(Eij−E0), if Eij < E0,

0, otherwise,
(1)

where K = J/kT , T is the temperature, J is the exchange constant, and Eij is the energy
between nearest-neighbor spins in units of J (i.e., Eij = −sisj ; si, sj = ±1). The free
parameter E0 controls the size of the clusters and the acceptance ratio of their updating,
as seen below. First neighbors of added spins may be added to the cluster, according to
the probability given above. Each spin has more than one chance of being part of the
cluster, since it may have more than one first neighbor in it. When no more spins can be
added, all spins in the cluster are flipped with an acceptance ratio A. Assuming that at
the frontier of the cluster there are m bonds linking parallel spins and n bonds linking
anti-parallel spins, A satisfies

A(a → b)

A(b → a)
=

[

e2K

(

1 − Padd(−J)

1 − Padd(J)

)]n−m

, (2)

where a → b represents the possible updating process, from the ‘old’ (a) to the ‘new’ (b)
state, which differs from the flipping of all spins in the cluster, and b → a represents the
opposite move. This expression ensures that detailed balance is satisfied [2].

Now we must consider three cases:

(i) For −1 ≤ E0 < 1, only spins in the same state as the seed may be added to the cluster,
with probability Padd = 1− e−K(1+E0). The acceptance ratio (equation (2)) cannot be
chosen to be 1 always and is given by A = e−K(1−E0)(m−n) if n < m (i.e., if the energy
increases when the spins in the cluster are flipped), or by A = 1 if n > m (i.e., if the
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energy decreases when the spins in the cluster are flipped). If E0 = −1, we obtain
the Metropolis algorithm, since only one-spin clusters are possible and the acceptance
ratio is A = e−KΔE for positive ΔE and 1 otherwise, where ΔE = 2(m − n) is the
difference in energy when the spin is flipped, in units of J .

(ii) For E0 = 1, again only spins in the same state can take part in the cluster, with
probability Padd = 1 − e−2K . Now, the acceptance ratio can be chosen to be 1, i.e.,
the cluster of parallel spins is always flipped. This is the celebrated Wolff algorithm.

(iii) For E0 > 1, spins anti-parallel to the seed may be part of the cluster, with probability
Padd = 1 − eK(1−E0), while spins in the same state of the seed have a probability
Padd = 1 − e−K(1+E0) of being added to the cluster. The acceptance ratio is again
always 1. Note that for E0 � 1 nearly all spins will be in the cluster and the algorithm
will be clearly inefficient (in fact, it will not be ergodic for E0 → ∞). Therefore, we
expect that, if the optimal choice of E0 is greater than 1, it will not be much greater
than this value.

Our goal here is to do a systematic study of the Niedermayer algorithm, in order to
establish the optimal value for E0, at least for the two models addressed in this text.

3. The autocorrelation time and dynamic exponent

One possible way to access the dynamic behavior of a numerical algorithm is to measure
the autocorrelation time, τ , of some convenient physical quantity, which is obtained from
the dependence of the autocorrelation function, ρ(t), on the time t. Here, time is measured
in Monte Carlo steps (MCS); one MCS is defined as the attempt to flip N spins, where
N is the number of spins in the (finite) lattice being simulated (in our case, N = L2,
where L is the linear size of the lattice). In fact, a rescaling of the time is necessary, when
dealing with cluster algorithms [2] and comparing the results for different values of E0.
The relation between ‘time’ in MCS, tMCS, and the ‘time’ taken to build and possibly flip
a cluster, t, is

tMCS = t
〈n〉
N

, (3)

where 〈n〉 is the mean size of the clusters. Note that, for Metropolis, 〈n〉 = 1 and 1 MCS
is the ‘time’ taken to try to flip N spins, as usual.

In this work, this rescaling has been done and all times are expressed in MCS. The
function ρ(t) is defined as

ρ(t) =

∫

[Φ(t′) − 〈Φ〉] [Φ(t′ + t) − 〈Φ〉] dt′

=

∫

[

Φ(t′)Φ(t′ + t) − 〈Φ〉2] dt′, (4)

where Φ(t) is some physical quantity. Of course, time is a discrete quantity in the
simulations; therefore, we have to discretize the previous equation, which leads to [2]

ρ(t) =
1

tmax − t

tmax−t
∑

t′=0

[Φ(t′)Φ(t′ + t)] − 1

(tmax − t)2

tmax−t
∑

t′=0

Φ(t′) ×
tmax−t
∑

t′=0

Φ(t′ + t). (5)
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The autocorrelation function is expected to behave, as a function of time, as [2]

ρ(t) = Ae−t/τ , (6)

at least in its simplest form. It is known that, in some cases, more than one exponential
term is required [11]; we will comment on this later. Usually, one can measure τ from the
slope of an adjusted straight line in a semi-log plot of the autocorrelation function versus
time. However, the autocorrelation function is not well behaved for long times, due to bad
statistics (this is evident from equation (5), since few ‘measurements’ are available for long
times). Therefore, one has to choose the region where the straight line will be adjusted
very carefully and it turns out that the value of τ so obtained is strongly dependent on this
choice. Alternatively, one can integrate ρ(t), assuming a single-exponential dependence
on (past and forward) time, and obtain

τ =
1

2

∫ ∞

−∞

ρ(t)

ρ(0)
dt, (7)

with

ρ(t) ≡ e−|t|/τ . (8)

Equation (7), when discretized, leads to [12]

τ =
1

2
+

∞
∑

t=1

ρ(t)

ρ(0)
. (9)

Of course, the sum in equation (9) cannot be carried out for large values of t. It has
to be truncated at some point; we use a cutoff (see [12] and references therein), defined
as the value in time where the noise in the data is clearly greater than the signal itself.
With the value of τ obtained as explained above, we made the integral of ρ(t)/ρ(0) from
the value of the cutoff to infinity. A criterion for accepting the cutoff is that the value of
this integral is smaller than the statistical uncertainty in calculating τ . Since the value
that we obtain for τ is underestimated, this criterion is a safe one.

Whenever possible, we fitted the autocorrelation time to the expected behavior,
namely τ ∼ Lz, in the critical region, where z is the dynamic exponent. A point worth
mentioning is that the autocorrelation functions of different quantities may behave in
different ways. A typical example is shown in figure 1, where both the magnetization and
the energy autocorrelation functions are depicted as functions of time, for the Niedermayer
algorithm with E0 = 0.3 and linear sizes L = 16 (main graph) and L = 256 (inset).
Note the abrupt drop of the magnetization autocorrelation function for small times and
L = 16. This is an indication that this function is not properly described by a single
exponential. On the other hand, the energy autocorrelation time follows a straight line
even for the smallest times. Therefore, we should calculate τ from the latter, for L = 16,
using equation (9). However, when L is increased, the picture changes and now the
magnetization autocorrelation function is well described by a single exponential (for small
and intermediate values of time), as depicted in the inset of figure 1. Whenever a crossover
like this is present, we measure the dynamic exponent from the behavior for large values
of L and for the function which is well described by a single exponential for this range
of L, using equation (9). But note that, for intermediate values of t, the slopes of both
curves in figure 1 (main graph and inset) appear to be the same. However, we have
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Figure 1. Magnetization and energy autocorrelation functions versus time (in
MCS) for the Niedermayer algorithm with E0 = 0.3 (see the text). The main
graph represents the behavior for linear size L = 16, while the inset applies to
L = 256.

already commented on the drawback of calculating τ from the slope of the autocorrelation
function on a semi-log graph. As final notes, we would like to mention that we used helical
boundary conditions and 20 independent runs (each with a different seed for the random
number generator) were made for each E0 and L. For each seed, at least 4 × 106 trial
flips were made, in order to calculate the autocorrelation functions and their respective
autocorrelation times. The values that we quote are the averages of the values obtained
for each seed of the random number generator and the uncertainty in τ is the standard
deviation of these 20 values.

4. Results and discussion

4.1. Ising model

We first present our results for the Ising model and leave to section 4.2 the discussion of
the results for the XY model.

As already discussed, the case E0 = −1 corresponds to the Metropolis algorithm.
At the critical temperature, the autocorrelation time scales with L as τ ∼ Lz, with
z = 2.1665 ± 0.0012 [7]. We have simulated this case only as a test for our algorithm.
The value that we found for z is consistent with the one quoted above and the scaling
law is obeyed, even for the smallest values of L that we simulated. Note also that, for
the Metropolis algorithm (E0 = −1), it is the magnetization autocorrelation time which
is well described by a single exponential.

The first non-trivial value of E0 that we simulated was −0.9. In figure 2 the
autocorrelation times for the magnetization are depicted as a function of L. We note
that, for this value of E0, only the autocorrelation function for the magnetization is well
described by a single exponential. The initial decay of the corresponding function for the
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Figure 2. Log–log graphs of the magnetization (◦) and energy (��)
autocorrelation time (in MCS) versus linear size L for the Niedermayer algorithm
with E0 = −0.9. The quoted value for z is obtained from the slope of an adjusted
straight line for the magnetization autocorrelation time for L ≥ 16 (see the text).
The dotted line is just a guide to the eye.

Figure 3. Mean size of the clusters of possibly flipped spins as a function of the
linear size L for E0 = −0.9.

energy has an abrupt drop for small times. Therefore, it is not a reliable quantity to
extract the autocorrelation time from. The value of z was obtained from the curve for
the magnetization and its value is z = 2.16 ± 0.04, which is, within error bars, the same
value as for the Metropolis algorithm.

In figure 3 the behavior of the mean size of the clusters of spins, 〈n〉, is shown, as a
function of L. For this value of E0, it seems that 〈n〉 does not change with L. We will see
shortly that in fact it initially grows with L and eventually saturates at some value of L,
which we call ˜L.

doi:10.1088/1742-5468/2010/04/P04012 7
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Figure 4. Log–log graphs of magnetization (◦) and energy (��) autocorrelation
time (in MCS) versus linear size L for the Niedermayer algorithm with E0 = 0.0.
The quoted value for z is obtained from the slope of an adjusted straight line for
the magnetization autocorrelation time, for values of L beyond the point where
the crossover takes place. The dotted line is just a guide to the eye.

The overall picture does not change for E0 = −0.5: the magnetization autocorrelation
function is well described by a single-exponential law and the autocorrelation time was
calculated from it. The dynamic exponent is z = 2.12 ± 0.03, still consistent with
the Metropolis value (the error bars that we quote are all one standard deviation; the
intersection with the expected value for the Metropolis algorithm, for this case, is obtained
assuming two standard deviations for the error). Since the picture for E0 = −0.5 does
not change from the one for E0 = −0.9, we will not depict the graphs for the former.

For E0 = 0, a crossover clearly takes place, as shown in figure 4: for small L, the
energy autocorrelation times are larger than their magnetization counterparts, while the
situation is reversed for larger L (this behavior is more evident for E0 = 0.3; we showed
the corresponding graph in figure 1 above and will comment on it below). The value of z is
obtained from the slope of an adjusted straight line for the magnetization autocorrelation
function, for values of L beyond the point where the crossover takes place. It reads
z = 2.15± 0.01 in this case, again compatible with the Metropolis value. The behavior of

〈n〉 is shown in figure 5: it grows initially with L but eventually saturates at ˜L ∼ 15. For
small values of L it is the autocorrelation function for the energy which is well described
by a single exponential, while the corresponding function for the magnetization shows an
abrupt drop for small times. The situation is reversed for L > ˜L.

This picture is maintained for E0 > 0.0, with the value of ˜L increasing with E0 and
the crossover taking place at larger and larger values of L. The dynamic exponent z is
given by 2.16±0.03 and 2.12±0.04 for E0 = 0.3 and 0.5, respectively. Both are compatible
with the value for the Metropolis algorithm.

In figure 1 we show the change in the behavior of the autocorrelation functions for the
magnetization and the energy. Note that the crossover mentioned above is connected also
to the possibility of describing the autocorrelation function using a single exponential:

doi:10.1088/1742-5468/2010/04/P04012 8
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Figure 5. Mean size of the clusters of possibly flipped spins as a function of the
linear size L for E0 = 0.0.

this is accomplished with the energy autocorrelation function for small values of L and
for its magnetization counterpart for larger values of L.

Finally, for E0 = 0.7 and 0.9 the crossover happens at values of L large enough to
prevent a reliable estimate of z. It is necessary to go to values of L well above our present
computational capabilities to be able to extract z from the graphs.

Nevertheless, the overall trend is well determined: for 0 ≤ E0 < 1, the dynamic
behavior is the Metropolis one but this behavior sets in only for large enough L. The
size of the clusters of turned spins increases with E0 but eventually saturates for L = ˜L,

where ˜L increases with E0. For L > ˜L, the relative size of the clusters (i.e., the ratio
〈n〉/L2) decreases and, in this sense, the algorithm is like a single-spin one (Metropolis, in
our case), explaining the value of its dynamic exponent. Therefore, the Wolff algorithm
(corresponding to E0 = 1) is still the best choice, as compared to the Niedermayer
algorithm with E0 < 1.

We postpone the discussion of the Wolff algorithm and go to E0 > 1. In this case, spins
in different states may be part of the same cluster, although with a smaller probability
than spins in the same state, and a cluster will always be flipped (see (iii) above). For
E0 � 1, almost all spins in the finite lattice will take part in the cluster and the algorithm
will not be optimal (in fact, it would not even be ergodic for E0 → ∞). Therefore, if the
Niedermayer algorithm is more efficient than Wolff’s, it should be for E0 close to 1. We,
therefore, studied the cases E0 = 1.1 and 1.05. The results are qualitatively equivalent
and in figure 6 we show both. Note that the growth of τ with L is faster than a power
law for both values of E0. In the inset, we show the corresponding graph for E0 = 1.1:
a crossover is also present but the value where it takes place decreases with E0 and for
E0 = 1.1 it is not seen. Since the value of the autocorrelation time is already greater then
for the Wolff algorithm, for a given L, and it grows faster than a power law with L, again
the optimal algorithm is Wolff’s.

We single out the discussion of the Wolff algorithm (E0 = 1) in order to compare
with other values of E0. Although our intention is not to calculate a precise value of z
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Figure 6. Log–log graphs of magnetization and energy autocorrelation time (in
MCS) versus linear size L for the Niedermayer algorithm with E0 = 1.05 and 1.1
(inset). In both graphs the autocorrelation time τ is plotted as function of the
linear size L. The dotted line is just a guide to the eye.

for this algorithm, we have adjusted the autocorrelation time for the energy (in this case,
it is this function which is well described by a single exponential for small values of the
time) as a function of L for three different functions, namely

τ =

⎧

⎪

⎨

⎪

⎩

ALz

A ln L + C

A(ln L)z + C.

(10)

The first function is the usual scaling law assumed for the autocorrelation function at the
critical point. We can see in figure 7 that there is no indication that the best adjusted
curve will eventually be a straight line in a log–log plot. Since previous calculations
tend to point to a value of z close to zero for the Wolff algorithm in two dimensions, one
cannot exclude the possibility of a logarithmic dependence, which is the case of the second
function in the above equation. The fitting is better than for the power law but it is not
a satisfactory one either. Moreover, it tends to deviate from the data for large enough L.
The third function is an ad hoc assumption, which proved to be the best fit to our data,
as can be seen in figure 7. The parameters of the function are obtained from a non-linear
fitting:

τ = A(ln L)z + C, (11)

with A = 0.21 ± 0.01, z = 1.50 ± 0.02 and C = 0.47 ± 0.03. We have no theoretical
explanation for this behavior. The constant C, however, is a finite-size correction. The
behavior in equation (11) is expected to hold true for large enough L and the logarithmic
dependence makes the scaling region reachable only for very large values of L. For this
region, one would expect a simpler law, namely τ = A(ln L)z; however, for intermediate
or small values of L, the constant C acts as a finite-size correction. A similar scaling law
was found for the exponential relaxation time for the Swendsen–Wang algorithm [13].

doi:10.1088/1742-5468/2010/04/P04012 10
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Figure 7. Log–log graph of the energy autocorrelation time (in MCS) as a
function of L for the Wolff algorithm. The three fitted curves proposed in (10)
are shown.

Figure 8. Log–log graph of the mean size of turned clusters as function of L.
The slope is an evaluation of γ/ν.

We also depict the mean size of the clusters of turned spins, 〈n〉, as a function of L
in figure 8. The slope of the straight line is 1.7500± 0.0001, which is, as expected [2], the
value for the ratio γ/ν. Note that, in contrast to what happens for E0 < 1, there is no
saturation of 〈n〉 with L. This seems to explain why Wolff and Niedermayer algorithms
are in different dynamic universality classes.

4.2. The XY model

We have applied the Niedermayer algorithm in the study of the dynamic behavior of the
XY model as well. The generalization of this algorithm to continuous models is outlined
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Figure 9. Log–log plot of the mean size of the clusters of flipped spins for the
XY model versus the linear size of the lattice. The slope of the curve just misses
the expected value for 2 − η, 7/4 [15].

in the appendix. Although we have studied three values of E0, our results are conclusive
and lead to an overall picture which is analogous to the one for the Ising model. We have
used the value kBTc/J = 0.8865 for the transition temperature of the two-dimensional
XY model. This value is only 0.7% off from the most recent evaluation of kBTc/J for this
model [14].

The mean size of the clusters of flipped spins for the Wolff algorithm as a function
of the linear size of the lattice is depicted in figure 9. The slope of the straight line is
1.7454± 0.009, which is slightly different from the expected value for 2− η for this model
at kBTc/J , 7/4 [15]. In fact, the small discrepancy may be due to the fact that we are not
using the (unknown) exact value for the transition temperature.

The autocorrelation times for the magnetization and energy for the Wolff algorithm
are shown in figure 10. We have not tried to fit the data but it is evident that the
energy autocorrelation time grows with L slower than a power law. The decrease in the
magnetization autocorrelation time has been observed previously (in fact, an oscillation
was observed in an algorithm which mixed Wolff’s and Swendsen–Wang’s procedures but
the overall picture is qualitatively similar to ours; see [16]).

We have simulated also the cases E0 = 0 and −0.5. The mean size of clusters of flipped
spins saturates and the value of saturation increases with E0 (see figure 11). Therefore,
one expects the same picture as for the Ising model: in particular, the dynamic behavior
for L large enough is the Metropolis one. This is confirmed for E0 = 0.0 explicitly,
where the dynamic exponent measured is z = 1.916 ± 0.004 (see figure 12). Recalling
our reasoning for the Ising model for E0 < 1, we can infer that the value just quoted for
z is an evaluation of the dynamic exponent for the Metropolis algorithm applied to the
two-dimensional XY model. Since, to the best of our knowledge, there is no previous
evaluation of z for this model and for the Metropolis algorithm, we have made a crude
evaluation of z for this case and obtained the value 1.89 ± 0.03, which is in agreement,
within error bars, with the value that we obtained for E0 = 0.0 for large L. Clearly,
the Wolff algorithm is the most efficient, as compared against the Niedermayer algorithm
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Figure 10. Autocorrelation times for the magnetization (circle) and energy
(square) for the Wolff algorithm applied to the two-dimensional XY model.

Figure 11. Mean size of the clusters of flipped spins for E0 = −0.5 (inset) and
E0 = 0 (main graph) for the two-dimensional XY model.

with the two values of E0 quoted above. We have also simulated one example of E0 > 1,
namely E0 = 1.05. The behavior is qualitatively the same as for the Ising model; see
figure 13. Note that the growth of the autocorrelation time is faster than a single power
law; in fact, it is well fitted by an exponential. Therefore, for the XY model also the best
choice is E0 = 1 (Wolff algorithm), as compared to the Niedermayer algorithm.

5. Summary

We have studied the dynamic behavior of the Niedermayer algorithm applied to the two-
dimensional Ising and XY models. Our main goal is to compare its efficiency with the
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Figure 12. Autocorrelation time for the magnetization and energy as a function
of L for E0 = −0.5 (main graph) and E0 = 0 (inset) for the two-dimensional XY
model.

Figure 13. Autocorrelation time for the magnetization and energy as a function
of L for E0 = 1.05 for the two-dimensional XY model.

Wolff algorithm. The latter is a particular case of the Niedermayer algorithm, such that
a parameter governing the size of the flipped clusters, E0, assumes the value 1.

We show that, for −1 < E0 < 1, the dynamic behavior eventually recovers the
Metropolis (E0 = −1) one. This behavior is linked to the saturation of the mean size of
the clusters, which happens for all E0 < 1, leading to a decrease of the relative size of
these clusters when L increases.

For the Wolff algorithm and the Ising model, we propose a scaling function for the
autocorrelation time for the magnetization. This choice is an ad hoc one but fits the data
very well and does not coincide with any function proposed so far in the literature. We
were not able to make a fitting with the same statistical quality for the XY model.
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For E0 > 1, the values of the autocorrelation times are greater than those for the
Wolff algorithm and grow faster than a power law with L.

Therefore, at least for these two models, the Wolff algorithm is superior to
Niedermayer’s.
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Appendix

The Hamiltonian for the XY model can be written as

H = −J
∑

〈i,j〉
�si · �sj (A.1)

where J is the coupling constant and �si is the spin of site i, represented by a unit vector
in any direction in the xy plane.

To start the cluster we randomly choose a preferred direction n̂ and a spin �si. This
spin is the first one of the cluster. Neighbors of �si are added to a cluster with probability

Padd =

{

1 − eKEij(1+E0), if Eij < E0,

0, otherwise,
(A.2)

where in the XY model, Eij = −(�si · n̂)(�sj · n̂). Note that, if E0 ≤ 1, only sites that have
the same component in the direction n̂ as �si may be added to the cluster. The procedure
for the construction of the cluster continues as described for the Ising model. After the
cluster is built the new directions of the spins are given by a reflection with respect to the
axis perpendicular to n̂.

The acceptance ratio for the XY model is slightly different from the one for the Ising
model. We cannot define the energy difference (ΔE) as the number of spins parallel and
anti-parallel to the cluster. So we must calculate the energy before and after the cluster
is flipped. In this case we define the acceptance ratio, for E0 ≤ 1, as

A(a → b) =

{

e−(ΔE/2)K(1−E0), if ΔE > 0

1, if ΔE < 0,
(A.3)

where a and b have the same meaning as before and ΔE is the difference in energy between
configurations a and b, in units of J . As we can see, for E0 = −1 we regain the Metropolis
algorithm with A = e−KΔE and for E0 = 1 we regain the Wolff algorithm with A = 1 for
all clusters. These choices ensure that detailed balance is obeyed.
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The generalization for E0 > 1 is analogous to the one described above and, again,
spins with different signs for the component along n̂ may also be part of the cluster, and
A = 1 always.
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